

NY5PxxxJ Series (OTP for NY5)

Single-Chip 4-bit MCU with 16~20 I/O and 4-Ch Speech/Midi

Version 0.9

Nov. 26, 2018

Revision History

Version	Date	Description	Modified Page
0.9	2018/11/26	Formal release.	-

1. 概述

NY5P系列產品爲多功能單晶片CMOS語音合成4位元微控制器,是九齊科技爲了支援 NY5A, NY5B, NY5C 系列 MaskROM 產品所專門開發的崁入式EPROM架構的OTP IC (One Time Programmable)。提供4通道的語音/Midi 合成功能,語音合成方式採用先進的高音質ADPCM演算法,最高採樣率可達CD音質44.1KHz,且硬體有16階的音量控制。提供兩種聲音輸出方式可供選擇,一種PWM輸出和一種DAC輸出。使用RISC精簡指令集架構,共有48條指令,除了少數指令需要2個時序,大多數指令都是1個時序即可完成,可以很方便的以程式控制來完成不同的應用。利用精準的+/- 0.5%內阻震盪,客戶可以不需外加震盪電阻。提供待機模式(Halt mode),可大幅度的節省功耗;另外還提供慢速模式(Slow mode),可以降低功耗。

2. 功能

- 寬廣的工作電壓: 2.0V ~ 5.5V。(同 MaskROM IC 的工作電壓範圍2.0V ~ 5.5V)
- 4-bit RISC 精簡指令集架構的微控制器,共有48條指令。
- 共有5個OTP母體,最大母體的ROM容量為832Kx10-bit,程式和資料共用同一塊ROM。ROM容量,秒數和I/O腳數如下:

產品編號 (OTP)	語音長度 (秒) @6KHz	ROM 容量 (10-bit)	I/O 腳數
NY5P025J	25.0	64K x 10	16 (PA, PB, PC, PD)
NY5P055J	55.0	136K x 10	16 (PA, PB, PC, PD)
NY5P085J	85.0	208K x 10	16 (PA, PB, PC, PD)
NY5P185J	185.0	448K x 10	20 (PA, PB, PC, PD, PE)
NY5P345J	345.0	832K x 10	20 (PA, PB, PC, PD, PE)

NY5A系列 MaskROM IC 的實際容量, 秒數和I/O腳數如下:

產品編號 (MaskROM)	語音長度 (秒) @6KHz	ROM 容量 (10-bit)	I/O 腳數
NY5A003B	3.3	12K x 10	8 (PA, PB)
NY5A005B	5.0	16K x 10	8 (PA, PB)
NY5A008B	8.3	24K x 10	8 (PA, PB)
NY5A011B	11.7	32K x 10	8 (PA, PB)
NY5A018B	18.3	48K x 10	8 (PA, PB)
NY5A025B	25.0	64K x 10	8 (PA, PB)
NY5A035B	35.0	88K x 10	8 (PA, PB)
NY5A045B	45.0	112K x 10	8 (PA, PB)
NY5A055B	55.0	136K x 10	8 (PA, PB)
NY5A065B	65.0	160K x 10	8 (PA, PB)

NY5B系列 MaskROM IC 的實際容量,秒數和I/O腳數如下:

產品編號 (MaskROM)	語音長度 (秒) @6KHz	ROM 容量 (10-bit)	I/O 腳數
NY5B005B	5.0	16K x 10	15 (PA, PB, PC, PD0~2)
NY5B008B	8.3	24K x 10	15 (PA, PB, PC, PD0~2)
NY5B011B	11.7	32K x 10	15 (PA, PB, PC, PD0~2)
NY5B018B	18.3	48K x 10	15 (PA, PB, PC, PD0~2)
NY5B025B	25.0	64K x 10	15 (PA, PB, PC, PD0~2)
NY5B035B	35.0	88K x 10	15 (PA, PB, PC, PD0~2)
NY5B045B	45.0	112K x 10	15 (PA, PB, PC, PD0~2)
NY5B055B	55.0	136K x 10	15 (PA, PB, PC, PD0~2)
NY5B065B	65.0	160K x 10	15 (PA, PB, PC, PD0~2)
NY5B075B	75.0	184K x 10	15 (PA, PB, PC, PD0~2)
NY5B085B	85.0	208K x 10	15 (PA, PB, PC, PD0~2)

NY5C系列 MaskROM IC 的實際容量, 秒數和I/O腳數如下:

產品編號 (MaskROM)	語音長度 (秒) @6KHz	ROM 容量 (10-bit)	I/O 腳數
NY5C112C	111.7	272K x 10	20 (PA, PB, PC, PD, PE)
NY5C132C	131.7	320K x 10	20 (PA, PB, PC, PD, PE)
NY5C158C	158.3	384K x 10	20 (PA, PB, PC, PD, PE)
NY5C185C	185.0	448K x 10	20 (PA, PB, PC, PD, PE)
NY5C225C	225.0	544K x 10	20 (PA, PB, PC, PD, PE)
NY5C265C	265.0	640K x 10	20 (PA, PB, PC, PD, PE)
NY5C305C	305.0	736K x 10	20 (PA, PB, PC, PD, PE)
NY5C345C	345.0	832K x 10	20 (PA, PB, PC, PD, PE)

- 224x4-bit RAM,分成4頁,每頁56x4-bit。
- 1MHz 或 2MHz指令頻率。
- 提供慢速模式(Slow mode),可降低功耗。(注意:由於慢速模式的時間誤差較大,不建議使用在計時的應用)
- 提供待機模式(Halt mode),可節省功耗,靜態電流(Isb)小於1uA。
- 精準的+/- 0.5% 內阻震盪。
- 提供低壓復位(LVR=1.8V),看門狗計時(WDT),I/O復位功能(External Reset)。
- 一個中斷輸入可連結到一組獨立的堆棧(Stack),並有多種中斷來源可以使用。
- 16~20根彈性的I/O腳,可設定爲input, output, large current output, IO, floating-type reset, pull-high reset, IR carrier output 和 large current IR carrier output 等輸入輸出功能。當做爲輸出時,可以選擇爲一般輸出電流

(Normal Drive Current, Normal Sink Current) 或是大電流輸出(Large Sink Current),可直推高亮度LED,不需外加三級管。

- 支援Open-Drain (OD) 的雙向I/O。
- IR紅外線輸出: 提供31KHz~58KHz可選擇的紅外線頻率輸出,並可選擇高電平/低電平編碼。
- 提供4通道的語音/Midi合成功能,可以單獨設定每個通道爲語音或Midi輸出。
- 更先進的高音質ADPCM語音合成演算法,可以經由簡單的調整採樣位數來提升音質。
- 提供256點, ADSR 和 Full-Wave 3種音色合成方法,用於進行不同Midi音色的編輯。
- 內建256階Midi包絡線控制(Envelope Control),用於進行Midi音量的控制。
- 一組9-bit PWM純硬體輸出,可以直接驅動喇叭或蜂鳴片;一組10-bit DAC純硬體輸出,可以外加放大線路來放大音量(通常用於多通道輸出)。
- 提供大音量PWM輸出,可以直接輸出更大音量,輸出語音不需外加三級管放大。
- 內建16階硬體音量控制(Volume Control),用於進行整體音量的控制。
- 支援 Quick-IO 訊號控制。
- 提供特殊的快速燒錄模式,以加快OTP燒錄時間。
- 支援特殊的ICP (In Circuit Programming) 燒錄功能,以方便客戶先組裝PCBA模組再進行燒錄。
- 提供可程式的Code資料保護模式。(常Security-Bit 被燒斷後,資料將無法讀取。)
- 提供多種出貨型態,以滿足客戶不同的應用需求。

(要進一步瞭解上述功能,請參考NY5A, NY5B, NY5C 的規格書,或聯繫九齊科技或九齊代理商。)

1. GENERAL DESCRIPTION

The NY5P series IC is a powerful 4-bit micro-controller based sound processor. They are embedded EPROM architecture, and the OTP (One Time Programmable) ICs that are designed to support NY5A, NY5B and NY5C MaskROM products. There are 4 channels that are configured as speech or midi, and all of them can be autoplayed back simultaneously. By using the high fidelity ADPCM speech synthesis algorithm, it can produce outstanding quality voices. Wide range sampling rate up to 44.1KHz and different volume level are supported. It is also equipped two kinds of audio outputs with fine resolution, including a current D/A converter and a PWM direct-drive. The RISC MCU architecture is very easy to program and control, various applications can be easily implemented. There are 48 instructions, and most of them are executed in single cycle. Through +/-1% accurate internal oscillation, external Rosc is unnecessary. Furthermore, in addition to the HALT mode (sleep mode), it offers the SLOW mode to minimize power dissipation.

2. FEATURES

- Wide operating voltage range: 2.0V to 5.5V. (Same as MaskROM products)
- 4-bit RISC type micro-controller with 48 instructions.
- There are 5 OTP bodies. 832Kx10-bit ROM is the maximum. Program and voice data share the same ROM space. The voice duration, ROM size and I/O counts are shown below.

Product (OTP)	Voice Duration (sec) @6KHz	ROM Size (10-bit)	I/O
NY5P025J	25.0	64K x 10	16 (PA, PB, PC, PD)
NY5P055J	55.0	136K x 10	16 (PA, PB, PC, PD)
NY5P085J	85.0	208K x 10	16 (PA, PB, PC, PD)
NY5P185J	185.0	448K x 10	20 (PA, PB, PC, PD, PE)
NY5P345J	345.0	832K x 10	20 (PA, PB, PC, PD, PE)

Regarding NY5A MaskROM series, the voice duration, ROM size and I/O counts are shown below.

Product (MaskROM)	Voice Duration (sec) @6KHz	ROM Size (10-bit)	I/O
NY5A003B	3.3	12K x 10	8 (PA, PB)
NY5A005B	5.0	16K x 10	8 (PA, PB)
NY5A008B	8.3	24K x 10	8 (PA, PB)
NY5A011B	11.7	32K x 10	8 (PA, PB)
NY5A018B	18.3	48K x 10	8 (PA, PB)
NY5A025B	25.0	64K x 10	8 (PA, PB)
NY5A035B	35.0	88K x 10	8 (PA, PB)
NY5A045B	45.0	112K x 10	8 (PA, PB)
NY5A055B	55.0	136K x 10	8 (PA, PB)
NY5A065B	65.0	160K x 10	8 (PA, PB)

Regarding NY5B MaskROM series, the voice duration, ROM size and I/O counts are shown below.

Product (MaskROM)	Voice Duration (sec) @6KHz	ROM Size (10-bit)	I/O
NY5B005B	5.0	16K x 10	15 (PA, PB, PC, PD0~2)
NY5B008B	8.3	24K x 10	15 (PA, PB, PC, PD0~2)
NY5B011B	11.7	32K x 10	15 (PA, PB, PC, PD0~2)
NY5B018B	18.3	48K x 10	15 (PA, PB, PC, PD0~2)
NY5B025B	25.0	64K x 10	15 (PA, PB, PC, PD0~2)
NY5B035B	35.0	88K x 10	15 (PA, PB, PC, PD0~2)
NY5B045B	45.0	112K x 10	15 (PA, PB, PC, PD0~2)
NY5B055B	55.0	136K x 10	15 (PA, PB, PC, PD0~2)
NY5B065B	65.0	160K x 10	15 (PA, PB, PC, PD0~2)
NY5B075B	75.0	184K x 10	15 (PA, PB, PC, PD0~2)
NY5B085B	85.0	208K x 10	15 (PA, PB, PC, PD0~2)

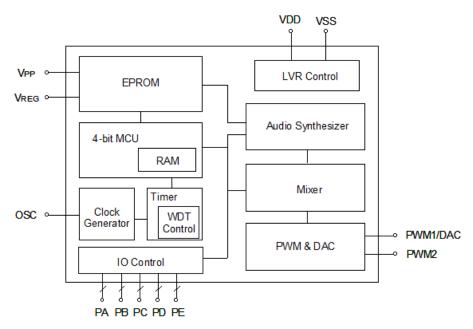
Regarding NY5C MaskROM series, the voice duration, ROM size and I/O counts are shown below.

Product (MaskROM)	Voice Duration (sec) @6KHz	ROM Size (10-bit)	Vo
NY5C112C	111.7	272K x 10	20 (PA, PB, PC, PD, PE)
NY5C132C	131.7	320K x 10	20 (PA, PB, PC, PD, PE)
NY5C158C	158.3	384K x 10	20 (PA, PB, PC, PD, PE)
NY5C185C	185.0	448K x 10	20 (PA, PB, PC, PD, PE)
NY5C225C	225.0	544K x 10	20 (PA, PB, PC, PD, PE)
NY5C265C	265.0	640K x 10	20 (PA, PB, PC, PD, PE)
NY5C305C	305.0	736K x 10	20 (PA, PB, PC, PD, PE)
NY5C345C	345.0	832K x 10	20 (PA, PB, PC, PD, PE)

- 224x4-bit RAM maximum, divided into 4 pages.
- 1MHz or 2MHz instruction frequency.
- SLOW mode to operate at low power consumption. (Not suggest using in Timer/Clock application.)
- HALT mode to save power, less than 1uA@3V standby current.
- Precisely embedded oscillator with build-in resistor (+/- 0.5%). External resistor to adjust system frequency is optional.
- Low voltage reset (LVR=1.8V), watch-dog reset and I/O port reset are all supported to protect the system.

7

One interrupt entrance with an independent stack, multiple interrupt sources.



- Maximum 20 flexible I/Os maximum with optional function: input, output, large current output, IO, floating-type reset, pull-high reset, IR carrier output and large current IR carrier output. For the output port, users can select the normal Drive current output or large Sink current output to directly drive high brightness LED.
- Support Open-Drain (OD) bi-direction IO.
- Infrared output: optional IR carrier frequency and optional data high/low IR output supported.
- Maximum of 4 channels can play simultaneously; each channel can be arbitrarily assigned as speech or
 Midi channel based on the product spec.
- New high fidelity ADPCM speech synthesis algorithm.
- 3 kinds of 256 points, ADSR and Full-Wave instrument waveform provide outstanding midi quality for MIDI.
- 256 steps envelope control for Midi.
- High quality 9-bit PWM to directly drive speaker, or 10-bit D/A converter audio output to amplify the volume by external audio amplifier for multi-channel MIDI especially.
- Support large PWM current output.
- 16 steps volume control for audio output.
- Quick-IO control supported.
- A unique fast writing mode is provided to speed up OTP writing time.
- A special ICP (In Circuit Programming) writing function is supported for user to fabricate PCBA in advance.

- Programmable code protection is provided. (When the Security-Bit is burnt down, data can't be read.)
- Various shipping type for different application requirement.

3. BLOCK DIAGRAM

4. PAD DESCRIPTION

Pad Name	ATTR.	Description	
Test	I	Keep floating.	
VDD#	Power	Positive power.	
GND#	Power	Negative power.	
PA0/SCK	I/O	Bit 0 for Port A, or serial clock input at programming mode.	
PA1/SDI	I/O	Bit 1 for Port A, or serial data input at programming mode.	
PA2~3	I/O	Bit 2~3 for Port A.	
PB0/Vpp	I/O	Bit0 for Port B, or Positive high power for programming.	
PB0~3	I/O	Bit 0~3 for Port B.	
PC0~3	I/O	Bit 0~3 for Port C.	
PD0~3	I/O	Bit 0~1 for Port D.	
PE0~3	I/O	Bit 0~2 for Port E. (PE for NY5P185J, NY5P345J.)	
PWM1/DAC	0	PWM1 output or DAC output.	
PWM2/Mode	0	PWM2 output, or select programming mode.	

5. MEMORY ORGANIZATION

There are maximum 832K words EPROM, 224 nibbles of RAM and 19 nibbles of dedicated system control register. The registers are divided into 11 nibbles of system registers and 8 nibbles of memory registers. Besides, there are several registers without address allocation, and they can only be accessed by the special instructions. One of the registers is RAM page register (PG), and the others are audio control registers.

5.1 ROM

A large program/data/voice single ROM is provided, and its structure is shown below. The reserved region contains system information and can't be utilized by users. The program page is limited by the unconditional branch instruction: JMP and CALL. Because it can only handle 14-bit length address of ROM, the program page size is 16K words.

Address	ROM
0x000000	Reset Vector
0x00000F	
0x000010	Interrupt Vector
0x00001E	
0x00001F	
	Reserved
0x000BFF	
0x000C00	Program & Data Space Program Page 0
0x003FFF	
0x004000	Program & Data Space

5.2 RAM

Each page of RAM contains 56 nibbles, and NY5P serial provides 224 nibbles of 4 pages. The page number (PG) register of RAM defined by the MPG instruction, and its initial value is 0. Because the memory space is shared with the memory registers (address=0x00~0x07), the address for RAM is 0x08~0x3F.

In addition to the immediate addressing mode, the indexed addressing mode is also supported. The page and address of the indexed RAM should be stored into RPT1 and RPT0 first, and users can read from or write in the XMD memory register to realize the indexed ROM access.

6. Clock Generator

The clock generator is a Ring oscillator, and users can select the internal resistor (INT-R). A precise INT-R oscillator is provided, and its accuracy is up to $\pm 0.5\%$.

7. IO PORTS

There are most 20 I/O ports, designated as PAx through PEx, and x=0~3. All the I/O ports can be configured as input, output, or IO port (bi-direction). For the input port, we provide an internal pull-high resistor option for convenience. For the output port, users can also option its initial value as low or high according to your application circuit. Besides, users can also enable the large current option for each output port to get a larger

sink current. The bi-direction IO port can be an input or output by its register value, and users can option the bi-direction IO with a pull-high resistor or without a pull-high resistor (Open-Drain). When the register equals 0, it is an output and can only output zero. When the register equals 1, it is a weak pull-high or floating (Open-Drain) so that it also can be considered as an input port with/without a pull-high resistor. Users also can enable the large sink current option of an IO port.

The PX0 port means the PA0, PB0, PC0, PD0 or PE0 port can also be optioned as an external reset pin or an infrared (IR) output pin. A reset port can possess a pull-high resistor or not, and an IR port can be initial low or high and also large sink current or not.

The pull-high resistor of all the I/O ports has two kinds of option: weak and strong. The weak one is about $850 \text{K}\Omega$ @3V for normal application and the strong one is about $430 \text{K}\Omega$ @3V usually for key matrix function. When users configure the weak or strong pull-high resistor, the pull-high resistors of all I/O ports are set as the option value.

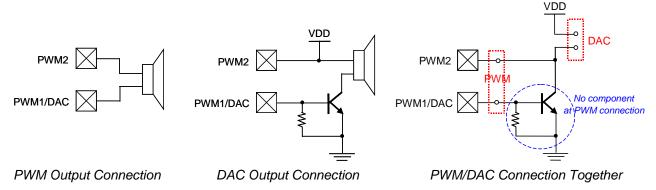
8. AUDIO SYNTHESIZER

There are 1-ch voice and 2-ch or 4-ch speech/Midi, and all modes are auto-played back by hardware. Different channel mode possesses different hardware structure. It provides a hardware mixer to mix the channel data. The mixer contains a mixer control register MIX. 1-ch ~ 4-ch voice and/or Midi are all configurable by programming the MIX Two audio output stages: DAC and PWM are supported.

8.1 Voice

A voice channel includes a PFLG, a VPR, a voice decoder, a QIO control code generator and an 8-bit sample rate timer (TM) whose timer clock source (TCS) is fixed to 1MHz. It supports PCM and encoded ADPCM speech data.

8.2 Midi


A Midi channel includes a PFLG, a VPR, a TM, an ENV, a timbre skipper and a multiplier, which multiplies the Midi data and the envelope value held by the ENV. The timbre skipper is used to fulfill the higher octave pitch playing. The hardware multiplier is dedicated to the Midi channel, and users can't operate it by any instruction.

8.3 Audio Output

By setting the AUD register, PWM or DAC can be easily chosen as the audio output stage. Besides, it provides a pad detecting mechanism. The pad detecting mechanism detects the PWM2 pad during the reset initialization period, and sets the initial value of the audio output register as PWM if the PWM2 connection is floating, or sets the initial value of the audio output register as DAC if the PWM2 connection is high. In conclusion, connect the speaker to PWM1 and PWM2 only if using PWM, otherwise connect PWM2 to VDD

if using DAC. Since the mechanism sets only the initial value of AUD, don't change the value of the AUD register if the pad detecting mechanism is adopted.

When using the PWM output, we provide an option of normal PWM current or large PWM current for different customer demand. The large PWM consumes more current and makes sound louder.

12

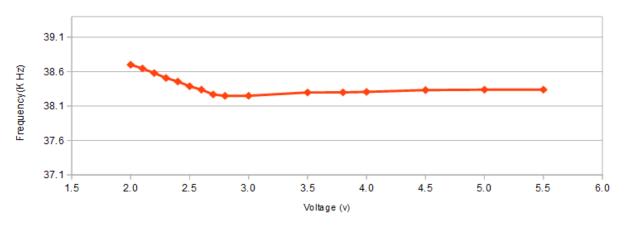
8.4 Volume Control

Both PWM and DAC support 16 steps hardware volume control by the VOL register.

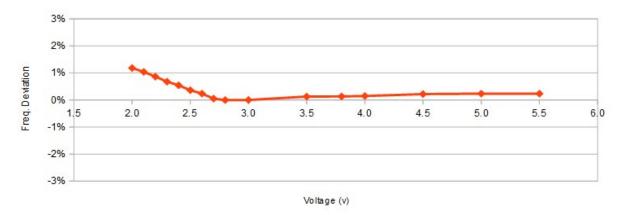
9. ELECTRICAL CHARACTERISTICS

9.1 Absolute Maximum Rating

Symbol	Parameter	Rated Value	Unit
Vdd - Vss	Supply voltage	-0.5 ~ +6.0	V
Vin	Input voltage	Vss-0.3V ~ Vdd+0.3	V
Тор	Operating Temperature	0 ~ +70	°C
Tst	Storage Temperature	-25 ~ +85	°C

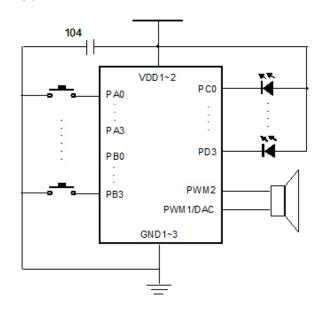

9.2 DC Characteristics

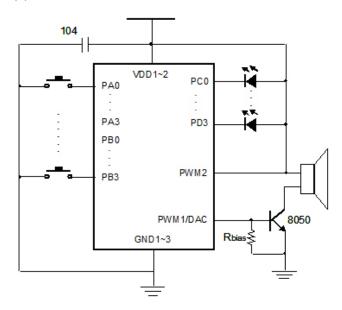
Symbol	Parameter		VDD	Min.	Тур.	Max.	Unit	Condition
VDD	Operating voltage			2.0	3	5.5	V	1MHz & 2MHz
Isb		Halt	3			1	uA	A Sleep, no loading
	Supply current	mode	4.5			1 1	u/\	
İsi		Slow mode	3		75		uA	1ms interrupt, no load
			4.5		100			
Іор		Operating mode	3		4		mA	1MHz, no loading
			4.5		5			
			3 4.5		4.5 5.5		mA	2MHz, no loading
			4.5		-3.5			
lil	Input current (Internal pull- high)	Weak (850K ohms)	4.5		-3.5		uA	Vil=0v
		Strong	3		-7		uA	
		(430K ohms)	4.5		-20			
loh	Output high current		3		-7		mA	Voh=2.0V
			4.5		-11			Voh=3.5V
loi	Output low current (Normal current)		3		10		mA	Vol=1.0V
			4.5		15			
	Output low current		3		20		mA	
	(Large current)		4.5		25			
I _{PWM}	PWM output current		3		60		mA	Load=8 ohms
	(Normal)		4.5		100			2000 0 011110
	PWM output current (Large)		3		70		mA	Load=8 ohms
			4.5		117	. 00		
I _{DAC}	DAC output current		3 4.5	-0.36 ~ -4.20 -0.47 ~ -4.85		mA	Half scale	
			4.5	-0	.47 ~ -4	.85	-	F(0.0:) F(0.4.)
∆F/F	Frequency deviation by voltage drop		3		1.5			Fosc(3.0v)-Fosc(2.4v) Fosc(3v)
			4.5				%	` ,
					0.5			Fosc(4.5v)-Fosc(3.0v) Fosc(4.5v)
△F/F	Frequency lot deviation		3	0.5		0.5	%	Fmax(3.0v)-Fmin(3.0v)
△F/F				-0.5		0.5		Fmax(3.0v)
Fosc	Oscillation Frequency		-	0.97	1	1.03	MHz	VDD=2.0~5.5V
				1.94	2	2.06		



9.3 Voltage vs. Frequency

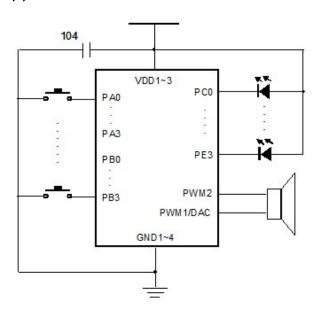
Voltage vs Freq. Deviation (38.25K Hz@3.0v)



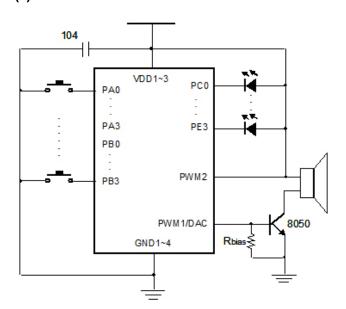

10. APPLICATION

10.1 NY5P025J, NY5P055J, NY5P085J

(1) PWM Direct-Drive

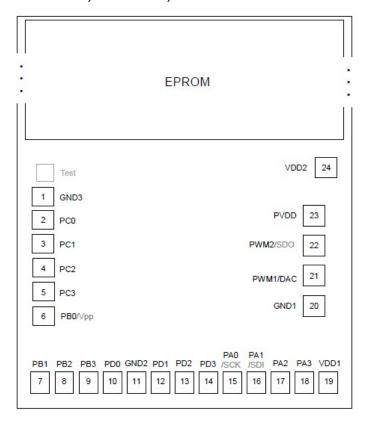


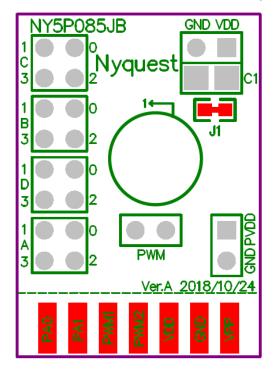
(2) DAC Direct-Drive



10.2 NY5P185J, NY5P345J

(1) PWM Direct-Drive


(2) DAC Direct-Drive


11. DIE PAD DIAGRAM

11.1 NY5P025J, NY5P055J, NY5P085J

12. COB PIN ASSIGNMENT

NY5P025JB, NY5P055JB, NY5P085JB (16 I/O)

Note: C1 is VDD power cap.

J1 is Short pad with VDD&PVDD.